
– 1 –

NEMETSCHEK SCIA
Balancing Collaboration between
Cross-functional Teams

KANBANCASESTUDYSERIES

https://www.kanban.university/

– 2 –

The phone rang in the office of Jean-Pierre Rammant, the CEO of Nemetschek Scia. He
picked it up and heard a familiar voice: “Ivan and eight other developers have quit.”

Ivan was a senior software engineer located in the Czech Republic along with the rest of
the development group. He had been working on the company’s most important product—
Scia Engineer, calculation software used by construction engineers. Ivan was the creator and
maintainer of the code behind the report application1, which is such a critical component of
any construction software that if it isn’t stable or accurate, engineers may very well switch to
some other construction software.

Immediately after the phone call, Jean-Pierre knew that most of the code behind the key
reporting application had just gone to the garbage. The reporting function of Scia Engineer
was already causing problems for engineers around Europe. It would crash often, many times
losing data that had already been generated. Each crash meant starting all over again. The
report was behaving slowly and had been flagged for rebuilding with highest priority. But
Ivan had just quit. The year was 2009.

In May 2013, Nemetschek Scia launched its annual release with a complete redo of the
report application. The new version automatically recovers data that has already been
generated even if the application crashes. “I don’t think Scia Engineer has ever had such a
crucial release,” says Patrick Steyaert, a trainer and coach consulting with the company. It
has taken five man-years to accomplish the necessary amount of coding alone. That is an
achievement that was deemed impossible before now.

This is the story of how Kanban transformed Scia Engineer from a dysfunctional product in
2009 to a progressive solution in 2013.

1The report application is core functionality in software products for design and analysis of large construction projects, such as bridges and
skyscrapers. The report needs to be detailed and absolutely accurate. It serves as proof to regulatory bodies for permits and to insurance
companies that the construction will not fail.

Company Background
Twenty-five developers and ten

product development engineers
(PDEs) are responsible for the
development of Scia Engineer.

Almost all of them are situated in
the Czech Republic and are organized
into teams designated according
to a particular structure domain—
steel, concrete, solver, etc. Product
managers and business analysts are
all situated at the headquarters of
Nemetschek Scia in Belgium.

Everyone on the Scia Engineer
team has a civil engineering
background and each has progressed
into a more specialized role in
the company. Whether it was
development, product management,
business analysis, or something else,

each person has grown incrementally
to fill the position he or she now
holds. Currently, however, a few
of the people who replaced the
developers who left in 2009 are purely
IT developers.

Patrick Steyaert has been
consulting for Nemetschek Scia since
2005. Over the years he has grown
to know the Czech developers pretty
well.

Patrick says, “I have been to
Prague to meet the developers many
times. Each time I noticed the same
thing: When we went to dinner with
them, evenings would progress long
into the early hours. The guys would
continue to engage in conversations
about the way we should do
something in the software in terms

of constructing it. They just can’t let
it go.”

He says that because they were
civil engineers prior to becoming
developers, they were always
energized by the mind-boggling
challenge of how to make the product
better.

Scia Engineer is design a
and analysis software for large
construction projects that dates back
to the mid ’90s. It was introduced as
the product Esa Prima Win. Since
then there were a few more versions
before the current product was
released in the early 2000s. Code for
this product has never been fully
refactored, meaning that older code
is still used in the newer versions.
Releases of features and partial
improvements for Scia Engineer

– 3 –

have been provided once a year to
customers.

“You don’t add a feature just like
that and see if it crashes a building,”
Chris Van Loock, the Quality
Process Manager at Nemetschek Scia
explains. It is a scientific software
product and it needs a certain process
from analysis to testing.

The First Need for Change
Back in 2005, the management

at Nemetschek Scia had a growing
problem. Releases for Scia Engineer
were coming in with huge delays of
up to a year, if they came in at all.
Management thought that continuing
to use older code from prior versions
might be the core reason for the
delays.

Patrick Steyaert was called in to
inspect the quality of the code. As he
talked to people like Chris Van Loock
and others around the company, it
became evident that code quality was
not the root cause of the problem.

What was in fact causing the
delays was how product management
and development interacted with
each other: Their process for reaching
decisions about the priority of
what would be developed (or not
developed) was slowing things down.
So reviewing code was exchanged for
reviewing process.

In 2009, when the coach heard that
Ivan and eight others were quitting,
he was baffled. What had gone so
wrong, and why? Scrum, a popular
process approach, had been adopted
by the company in 2005. It had
been used to improve the working
relationships between product
management and development and to
decrease delays. Scrum was supposed
to have prevented problems from
boiling over, not create more of them.

Before the agile method Scrum
was introduced, Scia Engineer
was operating on a long-term plan
for a release each year. Because
everyone in the company had a civil
engineering background, they all

felt equally qualified to have a voice
in prioritizing which features would
be included in a release. Individual
responsibilities had never been
defined very clearly, and without
completely separate and defined roles,
product managers and developers
each believed they knew what was
best for development.

Culturally different and physically
spread out, the two teams were
contributing ideas and changing
their minds about the product’s
direction more often than not.
Involved actively in product
decisions, developers would try to
make time for the engineering as
well. All along there had been no
safeguard against deviating from
the originally set priorities. Many
ideas were started but never finished.
Delays accumulated to such that
they were a year behind on the initial
release date. Jean-Pierre and the rest
of management were looking for an
explanation and a change.

The review of the company’s
processes showed a need for more
agility. Planning a whole year in
advance was ineffective. Instead
of accomplishing improvement,
it was distracting everyone and
creating friction between individual
team members. The people were
behaving too much like civil
engineers— in the hard and costly
world of construction, rework and
modification are prohibitively costly
and time-consuming and safety is
critical. The software development,
a wholly different domain, was
suffering firstly from this way of
thinking and secondly the lack of
attention it was receiving.

Major projects such as
reengineering existing functionality
were a nightmare for product and
development team managers to
estimate and follow. Those sorts
of projects were in fact avoided
because people were too insecure to
pursue them. As it was, requests in
general were already mixed in their
scope and size. Tasks came from
several sources—strategic direction

communicated by leadership,
improvements asked for by support,
business-as-usual bug fixes, and
routine tasks for maintenance
of the product, such as assuring
compatibility with operating system
upgrades.

Scrum Comes In
The solution in 2005 was to

introduce two major changes: a
process that improved and structured
the flow of work as well as healthy
restrictions that clearly defined the
individuals’ responsibilities. This was
meant to focus everyone’s attention.
It was hoped that as a result people
would be able to set a realistic plan
and keep a reasonable schedule for
releases. The agile process Scrum,
with its time-boxed iterations, as
well as the clear distribution of
responsibilities for prioritizing the
features from engineering, seemed
well fitted to these sorts of issues.

Probably no one could have
expected that this holistic product
development strategy would hide
the ominous potential to cost the
company some of its most talented
and engaged developers in 2009.

With the Scrum process,
the development and product
teams’ responsibilities were split.
Prioritization and product decision-
making were left solely to the product
team in Belgium. That restriction was
inevitable. If too many people had
direct input to priorities and targets,
the product development would have
continued losing focus. There was
serious danger that in the long run it
would have been out-gunned in the
market by superior niche products.

The clarification of roles was
pushed in an attempt to organize
faster delivery with higher quality.
Product managers were deemed to be
the ones who could determine what
was best for the product and transfer
that information to the developers.
They would set the targets and the
direction and turn those into user
stories and tasks for development.

– 4 –

From there, the development
team could simply take what was
in the input queue and deliver it.
Contributions toward the product’s
content would no longer be part of
the development team’s duties.

This segregation of responsibilities
was implemented. Next was the
introduction of time-boxed iterations.
These time-boxed increments of
functionality were intended to set
a stricter timeframe within which
developers needed to execute their
tasks.

The sprint, as such a timeframe
is called in the Scrum process,
was to be six weeks long. Tasks
would be discussed and pushed for
development during a meeting in
the beginning of the period, called a
sprint kickoff meeting.

In the following six weeks, the
developers had to accomplish the
tasks that were assigned by the
product team: They would produce
code for four weeks and then fix bugs
for two weeks.

Each morning the PDEs met with
the developers by way of a conference
call. During these daily stand-up
meetings, developers reported on
what they had done the day before,
what they planned to do that day, and
whether they had come across any
impediments or stumbling blocks.

In that way, each individual team
manager got a clear sense of what was
happening on a daily basis and how
the team was progressing. And since
what was scheduled for the sprint
was delivered more or less within the
timeframe, many had hoped that this
trend would continue for the bigger
release as well.

By its definition, Scrum is
intended to instigate collaborative
teamwork and bind together a group
of people to work as a unit to reach a
common goal. Implementing Scrum
at Scia Engineer was intended to
keep the product team engaged in
the development part of the process,
as well as the planning. Even though

their duties were mainly about setting
targets and priorities, they also
needed to follow up and see what was
happening after distributing the tasks.
It was believed that only through
observation of the end-to-end
workflow could a good quality result
be accomplished.

During the first few years after
the agile process was introduced,
Patrick saw a lot of resistance to
Scrum within the company. However,
metrics were showing that lead times
were improving. Or so it had seemed.

The truth of the matter was
that deep down, the developers in
the Czech Republic had become
increasingly unhappy. After
being segregated from product
management, the developers were
stripped of their ability to have a say
in the product’s content. The very
same people who cared so deeply
about the product that they would
debate about it late into the evening
were disenfranchised. They had lost
their grip on the content and instead
had been occupied with mundane
tasks like reviewing their own code
or unit testing2. And they weren’t
even sure why. Where their passion
used to exist, embitterment and
disappointment had bloomed.

According to Chris Van Loock,
“There has always been a drawback
with the developers and the late
night conversations: what if someone
from the product decision making
team has not been present during
the passionate discussions and
product-altering visions? Have the
discussions been made tangible, is
the information retained somewhere,
are the conclusions and ideas actually
realistic and marketable? The Czech
developers really have always been
quite energetic, fueled by their
enthusiasm for the overall product.
That enthusiasm has withered by
being isolated from it along with
the tedium of daily tasks. If the
energy builds up too much without
somewhere for it to go, there might
be lightning that follows.”

Scrum had somehow ignited a
lightning storm.

Change Comes in Once
More in 2009

Once the nine developers left to
create their own company, it was clear
that something in the process or the
organization needed to change.

Delivery delays had been fixed
with Scrum, and segregation had
been implemented, but, obviously,
at a high price. The whole product
and development team had fixated
themselves on their individual tasks
and deadlines, but had failed to learn
to collaborate with one another.

The passion people used to
carry with them was exchanged for
busyness. The lack of collaboration
resulted not only in nine people
leaving, but also in a product that
had ceased to improve as much as the
market required of it.

“I think we should try Kanban,”
Patrick said to Jean-Pierre one day in
2010.

“It will provide a big picture for
everyone and it will get people talking
to each other without changing
the way they work in any way,” he
explained.

He had come to the conclusion
that the staff members needed a
certain avenue to express their
opinions. Kanban, with visualization
boards—where everything
is transparent and subject to
discussion—could be the right one.

If anything was going to pull the
company out of the dilemma it was
facing, it was going to be its own
talent realizing its full potential and
capacity. That would happen only
if people felt they were emotionally
attached to the product.

Emotional attachment begins
when everyone feels they are part
of the decision-making process. So
if a new approach was to be tried,
everyone had to agree to it. The very
fundamentals of Kanban called for
such an incremental adoption.

2Unit Testing is a technical term that refers to testing individual functions or methods within the code on a very low level.

– 5 –

Patrick organized a kick-start
workshop for a selected pilot team.
The main goal of the workshop was
for each individual to identify the
problem before seeking a solution.
Participants were asked various
questions to find out why they felt
unsatisfied with the current status
quo.

“We said out loud everything that
bothered us,” Peter, a team leader,
recalls. “I remember the click during
the workshop. Patrick showed us
different Kanban visual boards and
how tasks were nicely spread out and
organized on them. It was so clear.
Through that example board, I clearly
saw the benefits this would have for
us, seeing what is in progress, being
able to identify bottlenecks or any
other issues for that matter. Also,
besides the transparency, it showed
simplicity: Kanban is not complex; it
is in fact a quite simple, natural way
to understand a process. It’s funny
that we never considered this way of
thinking before.”

Witnessing the progress of the
pilot team, more teams were kick
started with Kanban. But the biggest

test for Kanban was yet to come.
Jean-Pierre and Scia Engineer had
to get the reporting application
reengineered. The project needed
a devoted team with a common
understanding of the goal and how
it was to be accomplished. Perhaps
Kanban’s visual boards held the key
for success of this major project.

At the end of 2010, a team of five
developers, two product managers,
and a business analyst gathered to
make a plan for the Reporting rewrite
project.

“You don’t do a reengineering
such as that incrementally and
see if it works or not. You need an
understanding by everybody that the
choices here are top priority. It is all
about discipline,” Patrick says.

It took about three months, many
meetings with clients, and several
mock-ups of the report application
before the reengineering could
even begin. The product managers
outlined a special charter for the
project. The vision document gave
a rough overview of how the next
two years’ worth of prioritization,
coding, testing, analysis, deployment,

and merging had to run if the
reengineering was to succeed.

Of course, there was risk involved.
The stream of requirements that had
to be accomplished was huge. But
the team seemed committed and
viewed the risk as a driver, not as
an impediment. A devoted project
manager was following the entire
process.

In March 2011, the reengineering
of the report application began. The
team had a huge stream of requests
and requirements to be estimated and
evaluated on equal terms with the
rest. They were all put in the product

“Kanban is not
complex; it is in fact a
quite simple, natural
way to understand a
process. It’s funny that
we never considered
this way of thinking
before.”

Figure 1.1 The Discovery Kanban board. Each request is put on it and tested through various
stages in order to meet the product managers’ acceptance criteria. A column on the board
represents a stage, which in turn consists of “In Progress” and “Done” states. The system gives out
signals if a work item stands too long in the “Done” column without someone picking it from there
to move it along to the next step. In this Kanban board a card might be rejected halfway across
because the requirement has been deemed unfit.

– 6 –

Figure 1.2 The Expert System Requirement Kanban board. Both the product and development
teams elaborate requirements on this board.

Figure 1.3 The Delivery Kanban board. It shows the work items in software development at
different stages.

managers’ backlog. Everyone,
including developers, could pitch
their suggestions.

The reengineering work process
was organized in three main Kanban
boards—a Discovery Kanban board,
an Expert System Requirement
Kanban board, and a Delivery
Kanban board.

The Discovery Kanban board was
about creating and developing ideas
for the report application. Product

managers picked a request from
the backlog (where everyone could
have an input) and placed it on the
Discovery Kanban. Each request
became an individual card on the
board and as it was evaluated it was
moved along.

“The Discovery Kanban is a sort of
triage. It needs to be, because demand
will always be much higher than
what can be accomplished,” Geert
Adriaenssens, the Product Manager
at Nemetschek Scia, explains.

Many of the ideas had to be
thrown away—casualties to the fact
that engineering was limited—and
only features that were the most
suitable for the product and the client
could make it.

The Discovery Kanban—and the
transparent journey of each request
on it—helped people see which ideas
made it, which ones did not, and
why. With this sort of information
available to everyone, the sense of lost
influence began to disappear.

– 7 –

Once a certain card had succeeded
and passed through each stage of the
Discovery Kanban, it was transferred
to the Expert System Requirement
Kanban board. By that time the
product managers had already
recognized it as a vital requirement
for the product.

The Expert System Requirement
Kanban board was the developers’
opportunity to have a say on the
destiny of the requirement. This
board provided a platform for
conversation between product
managers and developers. They
elaborated on how each requirement
fit into the overall product. Through
this collaboration, each side agreed
on the requirement so that developers
would stick with it during the follow-
up delivery, even if the delivery
eventually required some of the
more mundane tasks such as testing,
analysis, and bug fixing.

“I remember seeing for the first
time that everyone was actually
focused on what was on the right
side of the board and not on the left,”
Patrick says.

What seemed to be happening was
that finally the focus on finishing a
task was preferred over starting a new
task or the loss of focus on a partially
completed one. As that was becoming
the trend, the successful report
reengineering stood better chance.

Once a card had successfully
passed this round of acceptance,
it was automatically transferred
to the input queue of the Delivery
Kanban board. Once on that board,
all requirements would be sliced
into smaller work items. Work-in-
progress limits were introduced on
the Delivery Kanban board that
developers handled. As developers
pulled a work item, they were
encouraged to finish it before taking
a new one.

The Development Manager ran
operations review meetings together
with the software development
teams after each two sprints (each
sprint was still six weeks). Together
they observed the cumulative flow
diagrams (see Figure 1.4) that were
generated from the information each
Kanban board provided, reevaluated

the situation, and reestablished
priorities if necessary. The big picture
gleaned from the operations review
meeting enabled vital improvements.

“Product Managers didn’t have
to waste time investigating whether
everything was going smoothly and
on time. They would just look at the
Kanban board and instantly know.
Instead, they could spend time
figuring how to improve the product,
knowing how the code performs.
This sort of first-hand information
is invaluable for product managers.
It can determine the destiny of a
requirement,” Patrick explains.

All these simple additions to the
Scrum process were fixing the most
urgent problems of Scia Engineer.

The Kanban boards had turned
into the source for information
through which smart, timely
decisions could be made. The charter
vision document had acted as the
shield to continue improving by using
the data from the boards. Both gave
everyone the comfort to keep calm
and focused and carry on with the
reengineering.

Figure 1.4 An example of a cumulative flow diagram that can be generated from the Kanban
system. The unevenly rising red part represents the distribution of work that has been
performed for the merging of a feature into the larger product. The merging has not been
happening concurrently with the delivery but rather in large chunks, and only when it was
critical.

Success!

In May 2013, the new reporting function was released to the customers of Scia Engineer.
The incredible amount of work involved in this major commitment has been worth it. While
the reaction of clients has yet to be witnessed, one thing is already certain. Scia Engineer and
its teams have regained the sense of ownership of their product. They can take pride in their
own abilities. They have regained the confidence that it is within them to be great and deliver
a whole new Scia Engineer product. It is just a matter of time and a few more Kanban boards.

To learn more, contact Patrick Steyaert at patrick.steyaert@okaloa.com and follow him on
Twitter at @PatrickSteyaert.

About Kanban University
Kanban University works to assure the highest quality
coaching and certified training in Kanban for knowledge
work and service work worldwide. Our Accredited Kanban
Trainers™ and Kanban Coaching Professionals™ follow the
Kanban Method for evolutionary organizational change.

Kanban University offers accreditation for Kanban trainers, a
professional designation for Kanban coaches, and certification
for Kanban practitioners.

https://www.kanban.university

© Copyright 2021 Kanban University

https://www.kanban.university/
https://www.kanban.university

